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Traveling through potential energy landscapes of disordered materials:
The activation-relaxation technique
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A detailed description of the activation-relaxation technique~ART! is presented. This method defines events
in the configurational energy landscape of disordered materials such as amorphous semiconductors, glasses and
polymers, in a two-step process: first, a configuration is activated from a local minimum to a nearby saddle
point; next, the configuration is relaxed to a new minimum; this allows for jumps over energy barriers much
higher than what can be reached with standard techniques. Such events can serve as basic steps in equilibrium
and kinetic Monte Carlo schemes.@S1063-651X~98!07302-4#

PACS number~s!: 02.70.Rw, 61.43.Bn, 82.20.Kh, 82.20.Mj
im
ist
er
al
a
p
om
ts
a
ua
e
fo
rri
r
e

nu
uc

-
bi
a

be
th
ot

om
ss
be

e-
n-
p in

ric

x-

stly
ow,
, in-
er

ids
the
the
go-
ng

dom
lgo-
ics

le
in

u-
ver
can
ms,
tion
lgo-
e
ny
s.

tly
ara-
pic
the
hous
ue
ous

Oh
s:

c
ss
I. INTRODUCTION

Microscopic structural phenomena often proceed on t
scales remarkably long compared to those of the atom
oscillations. This is the case, for example, for glassy mat
als where microscopic dynamics takes place over time sc
orders of magnitude larger than that associated with the n
ral atomistic time scale, set by a phonon frequency of ty
cally 1013 Hz. Such a discrepancy is best understood fr
the configurational energy landscape: the system finds i
in a deep minimum surrounded by energy barriers that
many times larger than its temperature. Only rare fluct
tions of thermal energies will allow the system to jump ov
a barrier and move to a new minimum. Typically, the rate
such jumps decreases exponentially with increasing ba
height, and may reach macroscopic values — of the orde
seconds or more, rendering the study of these phenom
rather difficult.

These long time scales are especially prohibitive for
merical studies. Traditional methods for the study of str
tural relaxation are of two kinds: molecular dynamics~MD!
and Monte Carlo~MC!. MD is based on the direct integra
tion of the equations of motion. In order to ensure the sta
ity of the solution, the integration step cannot be larger th
a fraction of a typical phonon vibration, i.e., somewhere
tween 1 and 10 fs. Depending on the number of atoms,
interaction potential, and the speed of the computer, the t
number of steps can reach 104 to 107, which translates into a
time scale on the order of nanoseconds; this is still far fr
the experimental time scale for structural relaxation of gla
materials. Because of the nature of MD, improvements
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yond the linear level are particularly difficult to achieve. R
cently, a promising scheme involving a mixture of transitio
state theory and MD has achieved a significant speed-u
the simulation of a model system@1#; it is, however, too
early to say how successful this scheme will be for gene
problems.

The inherent limitation to the degree of structural rela
ation achieved with MD does not applya priori to MC
schemes. Here, the speed of structural relaxation is mo
determined by the nature of the attempted moves. Until n
most algorithms have used moves defined in real space
volving the displacement of either one or a limited numb
of atoms. Single-atom moves are rather efficient in liqu
@2#; however, they are not as successful in reproducing
collective nature of structural relaxation associated with
slow dynamics of glassy and amorphous materials. Al
rithms with more complex moves exist: the bond-switchi
algorithm of Wooten, Winer, and Weaire@3#, for instance,
succeeds in producing some of the best continuous ran
network models of amorphous semiconductors. Such a
rithms are, however, problem specific, and their dynam
generally unphysical.

In lattice models like the Ising model, it is often possib
to move from microscopic events, such as single spin flips
the traditional Metropolis and heat-bath Monte Carlo sim
lations, to collective events determining the behavior o
longer times, such as flips of clusters of spins. Doing so
lead to a substantial improvement in the speed of algorith
especially near the critical temperature where the correla
length and thus the cluster size diverges. The cluster a
rithm of Swendsen and Wang@4#, for example, can increas
the computational performance of the simulation by ma
orders of magnitude compared to single-spin-flip algorithm

In this paper, we give a detailed description of a recen
proposed method that introduces a similar change of p
digm for continuum-based models: from the microsco
single-atom displacements to collective moves that form
basis of the activated processes in glassy and amorp
materials. This method, the activation-relaxation techniq
~ART!, has already been applied with success to amorph
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2420 57NORMAN MOUSSEAU AND G. T. BARKEMA
semiconductors and metallic glasses@5–7#. With a similar
algorithm, Doye and Wales have studied the potential ene
surface of small Lennard-Jones clusters@8#.

An event in ART is defined as a move from a local ener
minimum MW (0)[(xW1

(0) , . . . ,xWN
(0)) to another nearby mini-

mum MW (1)[(xW1
(1) , . . . ,xWN

(1)) following a two-step process
mimicking physical activated processes:~i! the activation
during which a configuration is pushed from a local min
mum to a nearby saddle point;~ii ! the relaxation that brings
the configuration from this saddle point to a new local mi
mum.

By defining the moves in the 3N-dimensional space con
trolling the dynamics of relaxation—the configurational e
ergy landscape—ART removes any constraint on the typ
real-space moves allowed. This is particularly important
disordered and complex materials where events can inv
very complex local or collective rearrangements that are h
to foresee.

This paper is organized as follows: we first present
activation-relaxation technique. The following section d
cusses the implementation of the algorithm. We finally sh
examples of events in amorphous silicon (a-Si! and silica
glass (g-SiO2).

II. THE ACTIVATION-RELAXATION TECHNIQUE

In many materials and systems, the dynamics can be
curately described as a sequence of metastables states
rated by energy barriers high compared tokBT, the typical
energy scale at the atomic level. Such metastable config
tions will remain essentially unchanged on a time scale
is long compared with the natural time scale set by latt
vibrations, and can be well identified by the atomic positio
at 0 K, i.e., by the local minimum of the configuration
energy landscape. Knowledge of the distribution and prop
ties of these local minima is sufficient for determining t
thermodynamical properties of the system. To understand
dynamical properties of these materials, however, a kno
edge of the rates controlling the jumps from one minimum
another is also necessary.

To a first approximation, the dynamics in these mater
is determined by the activation energy, i.e., the ene
needed to bring a configuration from the local minimum to
nearby saddle point. Because of the exponential nature
erning the energy fluctuations, any event following anot
trajectory, with by definition an energy higher than that at
saddle point, will be much less probable and can be sa
neglected@9#. For the simplest characterization of the no
equilibrium properties or dynamics of a disorder mater
away from the glass transition it is, therefore, sufficient
map the continuous configurational energy landscape on
network formed by minima connected via trajectories go
through first-order saddle points@10#. The current ART
method provides a local prescription for exploring this si
plified space through hops from a local minimum to anot
~events!.

By defining the events directly in the configurational e
ergy landscape, which, as we have seen, fully determines
dynamical and equilibrium properties of a material, ART b
comes much less sensitive to the details of the real-sp
configuration. Doing so, it refrains from defininga priori the
y

y

-

-
of
n
ve
rd

e
-

c-
epa-

ra-
at
e
s

r-

he
l-
o

ls
y

v-
r

e
ly
-
l

a
g

-
r

-
he
-
ce

type of atomic rearrangements leading to structural rel
ation. In effect, it is the system itself that determines t
appropriate atomic processes, in much closer agreement
real processes. Such a change in paradigm, from real to
figurational space, is particularly necessary for the study
glassy materials where an unambiguous description of r
space configurations in terms of neighbor lists, coordinat
defects, etc., is generally impossible to give. ART isa priori
blind to the details of real space configurations; all AR
needs is a local and continuous description of an ene
landscape; discontinuous energy landscapes, as, for insta
in discrete spin models, cannot be differentiated and t
forces are not defined. Any continuous interaction potent
however, from Lennard-Jones to LDA, can, in principle,
used with ART.

As mentioned in the introduction, the activation
relaxation technique consists of two parts: a path from
local energy minimum to a nearby saddle point—the acti
tion; and a trajectory from this point to a new minimum—
the relaxation.

The relaxation to an energy minimum poses no particu
challenge: it is a well-defined and well-behaved operation
which a number of efficient algorithms are available~see, for
example, Ref.@11#!.

The activation from a minimum to a saddle point requir
more care: to our knowledge, no theoretical framework
ists that allows for finding the complete set of saddle poi
around a local minimum. A number of works have be
devoted to the study of finding the transition states in clus
and low-dimensional systems. Many of the techniques, h
ever, start with the knowledge of both minimum states a
try to find the path connecting the two@12#. It is a very
different problem to try to find a saddle point with th
knowledge of only one minimum. Most methods can
traced back to two techniques, the distinguished coordin
@13,14# and the eigenvector-following@8,15,16# algorithms.
Although these methods are generic, neither addresses
question of the generation of a complete set of saddle-po
around a given minimum.

In steepest-descent—or zero-temperature Langevin
namics, where the velocity is proportional to the force—
trajectories, including those starting at a saddle point, lea
a local energy minimum. A naive approach to finding t
trajectory from a minimum to a nearby saddle point wou
therefore be to retrace this path using a time-reversed z
temperature Langevin dynamics, or a steepest-ascentalgo-
rithm. This fails, however, since using steepest ascent sim
corresponds to inverting the sign of the total energy, in eff
exchanging local minima with local maxima. Moreover, t
minimum-energy trajectory leading from a local minimum
a saddle point is an unstable trajectory for steepest asc
any perturbation sends the path away from the rever
steepest-descent trajectory.

Within Newtonian mechanics a trajectory from a sadd
point to a minimum is also time reversible: starting at
minimum with properly chosen velocities, one would be ab
to move up to any saddle point. In contrast to time-rever
Langevin dynamics, the trajectory cannot reach diverg
parts of the configurational energy landscape since the t
energy is conserved. As with time-reversed zero-tempera
Langevin dynamics, though, even a very tiny deviation c
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57 2421TRAVELING THROUGH POTENTIAL ENERGY . . .
bring the system far away from the saddle point. Samplin
very large number of initial random displacements and th
targeting the least divergent trajectories, Dykmanet al.could
successfully find the saddle points of a chaotic tw
dimensional system@17#. If this approach can work for a
simple energy function in low dimensions, such a hit-an
miss algorithm becomes hopeless in a large 3N-dimensional
space with a computationally expensive force to evaluate

At the saddle point, all eigenvalues of the Hessian but
are positive. The energy landscape resembles a valley g
down along the eigendirections corresponding to the ne
tive eigenvalue. Leaving the saddle point by steepest des
we follow the floor of the valley to eventually arrive at
nearby minimum. This suggests immediately a local al
rithm that should be more stable than the steepest ascen
define a trajectory to a saddle point, the configuration
moved in such a way as to minimize the force along
directions but the one corresponding to the lowest eig
value. This eigenvalue is identified with the local bottom
the valley, and the configuration is moved against the fo
along this direction. A small displacement away from t
bottom of the valley would be corrected for by the (3N
21)-dimensional minimization, making the trajectory stab
Intuitively, this line and the path of steepest descent sho
run mostly parallel; they are not identical though, and som
times diverge.

In most circumstances, this algorithm will converge to
saddle point. Because we consider here the maximiza
along a single eigendirection, this algorithm will not lead
second- or higher-order saddle points. This is in esse
what was proposed by Cerjan and Miller for the location
transition states in low-dimensional energy surfaces@15#,
and what was used for an extensive study of a 13-atom
cluster by Doye and Wales@8#.

Because of itsN3 requirements, this algorithm become
rapidly too computer intensive for realistic bulk systems,
ten demanding many hundreds of atoms with a costly ene
function. We must therefore find another algorithm whi
does not require evaluation of the full Hessian matrix at e
step.

The current implementation of ART follows a modifie
force vectorGW , obtained byinverting the component of the
force parallel to the displacement from the current positio
to the local minimumrW5XW 2MW (0) while minimizing all
other 3N21 directions:

GW 5FW 2~11a!~FW • r̂ ! r̂ , ~1!

wherer̂ is the normalized vector parallel torW, FW is the total
force on the configuration as calculated using an interac
potential, anda is a control parameter. This equation is a
plied iteratively until the force parallel to the displaceme
from the minimumFW • r̂ changes sign from negative to pos
tive. Generally, the force perpendicular to the displacem
decreases rapidly after a few iterations, bringing the confi
ration close to the steepest-ascent trajectory. For a stee
ascent path perfectly parallel torW, the modified force of Eq.
~1! strictly sticks to the floor of the valley up to the sadd
point; for steepest-ascent trajectories perpendicular torW, the
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algorithm fails. From experience, such trajectories are r
and the algorithm generally converges to a saddle point.

Since moves are defined in the configurational ene
landscape, vectors in Eq.~1! have 3N components both for
the force and the position@18#; the displacement of the con
figuration from a local minimum to a nearby saddle po
may, therefore, involveany number of atoms—from one to
all N atoms.

In disordered networks, it is unlikely that the lowest e
genvalue of the Hessian matrix is degenerate. There
therefore, always only two valleys stemming out of the loc
minimum, corresponding to the positive and negative dir
tion of the lowest eigenvector. Thus, following valleys fro
the minimum either along the lowest eigenvector or t
modified force leads to only two saddle points, wherea
system typically has many, even thousands, of saddle po
Even worse, these two directions correspond, in bulk ma
rials, to long-wavelength distorsions and do not lead to
teresting events. Finding a way to avoid these directions
be a difficult task.

One approach, taken by Doye and Wales for the study
a 13-atom Lennard-Jones cluster, is to select in turn eac
the eigendirections of the Hessian at the minimum and
low it to a nearby saddle point@8#. Since there are only 78
such directions, only a fraction of the many ('103, see Ref.
@19#! saddle points can be reached this way from the m
mum; local information around the minimum is insufficie
to locate all valleys leading to saddle points. Moreover,
repeated calculation of the Hessian is an expensive opera
for large systems.

We propose a few approaches that do not requireO(N3)
operations and work for a wide spectrum of circumstanc
these are discussed in Sec. III.

Once a valley has been found, the situation becomes m
straightforward, and we can use either of the algorithms
scribed above to follow the valley to the saddle point.

III. IMPLEMENTATION

The implementation of the method poses no particu
conceptual or computational problems. The whole code,
cept for the force and total energy calculation, contains a
hundred lines at most. Its core consists of three parts:
escape from the harmonic basin, the convergence to
saddle point, and the relaxation to a minimum.

A. Escaping the harmonic basin

The part of the algorithm that is most sensitive to deta
of the system studied is the escape from the harmonic ba
different approaches might have to be tried to find the m
effective one. In general, open but stiff materials like am
phous semiconductors have a very small harmonic ba
from which it is easy to escape. More compact materia
such as metallic glasses, or floppier ones, such as s
glasses, pose more problems. To ensure a proper sampli
events, any method for escaping the harmonic basin
leaves out a significant fraction of the saddle points sho
be avoided.

The simplest way of escaping a harmonic basin is to m
a random displacement away from the minimum, involving
single randomly chosen atom, a cluster, or all atoms. In
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2422 57NORMAN MOUSSEAU AND G. T. BARKEMA
experience, for small systems they all lead to the same
of events; for larger systems, a global random displacem
tends to induce many spatially separated events which
come difficult to disentangle. We therefore prefer a lo
displacement for systems of more than a few hundred ato

A random direction generally has a sizable overlap w
the softest elastic modes, and tends to fall back to th
easily. We get better results by taking the escape direc
for the initial displacement along the force induced by
small random displacement; this procedure is essent
equivalent to applying the Hessian matrix to a random v
tor, resulting in a first-order suppression of the softest ela
modes.

For small systems, where the Hessian can be obtained
diagonalized in a relatively short time, the softest modes
be removed directly from a random initial direction, or th
initial displacement can be chosen along a linear comb
tion of the stiffest eigendirections. This approach is rat
computationally involved and cannot be reasonably car
out for systems with more than 100 or 200 atoms.

Once the initial direction is fixed, it is then followed unt
the passage of some threshold, indicating that the harm
region has been left. This threshold has to be large enoug
ensure that the trajectory does not fold back onto the so
direction while remaining inside the basin of attraction. W
use a combination of two conditions for determining t
point where the configuration has left the harmonic reg
surrounding the initial minimum: when the force compone
parallel to the displacement either stops increasing or w
the ratio of this component to the perpendicular compon
is smaller then a given fraction, we consider that the h
monic region left and the ART procedure as such begins

In the algorithm used in Refs.@5#, @6#, and @7#, no clear
distinction was made between leaving the harmonic reg
and convergence to the saddle point; instead, an additi
repulsive harmonic potential was introduced, which is add
around the minimum with a strengthArep and a ranger c :

Erep5Arep~ urWu2r c!
2. ~2!

Although relatively efficient, this approach modifies the loc
energy landscape and introduces an artificial length scalr c
in the problem. To reduce the impact of this additional len
scale, one can reinitializer c andArep at random before eac
event.

Currently we prefer to take as the initial direction th
force after a random displacement, and follow that direct
until we leave the harmonic region, and then followGW as
defined in Eq.~1! until the saddle point is reached.

B. Convergence to a saddle point

Convergence to the saddle point cannot be achieved u
standard minimization techniques because the modified f
GW as defined in Eq.~1! is not curl free, i.e., it cannot be
obtained from the gradient of a scalar. We therefore hav
follow closely the direction ofGW until we reach the saddle
point, indicated by a change of sign in the component of
force parallel torW. Many simple algorithms can readily b
adapted for this purpose. Making small displacements in
direction of GW is the most obvious choice for reaching
pe
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saddle point. Such a crude method, however, is rather
stable and can easily enter into oscillations or severe slow
down.

The conjugate-gradient~CG! algorithm provides an eas
solution to this restriction by ensuring that the new displa
ment will be in a direction conjugate to the previous on
@11# The line minimization along a directionĥ required in
the CG implementations of numerical packages, howe
are based on the existence of a total energy—which can
be defined. We replace it by a root-finding algorithm
GW •ĥ. In general, only a couple of force evaluations are n
essary to reach that point.

The Levenberg-Marquardt~LM ! algorithm @11# proposes
a mixture of steepest-descent and a full-fledged second-o
Hessian minimization technique. Away from the harmon
regime, the steepest descent controls the optimization
steps get smaller and the space becomes more convol
the information contained in the Hessian matrix starts be
used.

If applied directly, the LM algorithm is rather compute
intensive and does not suit our need. However, it is poss
to simplify the algorithm while retaining many of its advan
tages. We keep here the steepest-descent part untouche
use a local Hessian, which contains only the 333 blocks
along the diagonal of the full Hessian, where both deriv
tives of the energy are belonging to the same atom@20#.
Although this is a rather crude approximation to the re
Hessian, it suffices to reach with a reasonable efficiency
saddle point and the minimum on the other side.

At each step, the force and the local Hessian are ev
ated. The displacement is then calculated using a param
l, which is varied depending on the success of the step:

DXW 5•~H21!FW ~3!

with

H5H1lI , ~4!

whereI is the identity matrix, andH is the local Hessian. Fo
large l, the right-hand term dominates, and the algorith
reduces to a steepest descent with step sizel21 times the
force. When the step is too large,l is increased, otherwise i
is decreased.

Both LM and CG require a similar number of steps.
negative point of LM is that, in order to be computationa
efficient, a local Hessian should be calculated analytica
which is not easy if the force is taken from already writt
subroutines or packages. Therefore, we tend to prefer C

C. Relaxation to a minimum

Although any method could be used for the relaxation
the minimum, we prefer to use the same algorithm as for
convergence to the saddle point. In general, it is not nec
sary to have a very precise convergence, just a few sig
cant digits~of the order of 0.01 Å! suffice. Because of its
stability, the convergence to a minimum is often faster th
that to a saddle point.

Depending on the material or system, it takes roug
100–500 force evaluations to converge to a saddle point,
50–300 steps to reach an acceptable minimum. For a 5
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57 2423TRAVELING THROUGH POTENTIAL ENERGY . . .
atom unit cell and a relaxation of roughly one ART step p
atom, this means between 100 000 and 1 000 000 fo
evaluations.

IV. EXAMPLE: EVENTS IN AMORPHOUS SILICON
AND SILICA GLASS

To illustrate the real-space working of the algorithm, w
present events created ina-Si andg-SiO2.

A 1000-atom cell ofa-Si was obtained following the pre
scription given in Ref.@5#: starting from a randomly packe
cubic cell, ART is applied successively until the configur
tion reaches a stable energy. To obtain a low-energy confi
ration, we use the standard Metropolis algorithm, wher
new configuration is accepted with probability 1 if the e
ergy is lower than that in the original configuration, othe
wise with probability exp(2DE/kBT). The temperature a
such is fictitious and we find thatkBT50.25 gives satisfac-
tory results. As in Ref.@5#, we use a modified Stillinger
Weber @21# interaction potential with a three-body forc
twice the original value to remove the liquidlike features
the amorphous phase associated with the original SW.

One event obtained in the relaxed structure is shown
Fig. 1 from two different angles. In the bottom represen
tion, we can see how the configuration passes from th
five-membered rings~initial! to one five- and one eight
membered ring~final!. In the process, four bonds are brok
and four are created, preserving the total coordination,
the displacement incurred by the atoms is 2.3 Å. This ev
has an activation energy of 5.74 eV and the final configu
tion is 2.30 eV higher than the initial one.

For silica glass, we use a 576-atom configuration rela

FIG. 1. An event in the simulation of amorphous silicon. Fro
left to right, the initial, saddle-point, and final configurations a
shown. The top and bottom rows correspond to different view
angles of the same event. Dark atoms change their bonding e
ronment during the event; light atoms are nearest neighbors o
dark atoms. Activation energy, 5.74 eV; energy difference fr
initial to final configuration, 2.30 eV.
r
ce
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f
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e

d
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d

from the melt using molecular dynamics@22#. The initial
relaxation was done using the full Vashishtaet al. potential
@23# while ART was applied using a screened version of
same potential@24#. Figure 2 shows an event in this stru
ture. Because of its more open nature, events in silica ten
involve more atoms than in amorphous silicon. Total atom
displacement between initial and final configurations is 6.8
with three broken and two created bonds and many ten
atoms involved at a lower degree during the activation a
relaxation phases. The activation energy is considerable
10.84 eV, with the new configuration 4.25 eV higher in e
ergy than the initial one.

The characterization of events both ina-Si andg-SiO2 is
difficult: although each event normally involves less th
10–12 bonds being broken or created, many more atoms
move significantly, rendering visualization complicated. W
are currently working on a systematic study of events in b
materials.

V. CONCLUSION

By defining events directly in the configurational ener
landscape, the activation-relaxation technique provides a
neric approach to study relaxation in complex systems s

g
vi-
he

FIG. 2. An event in the simulation of silica glass. From top
bottom, the initial, saddle-point, and final configurations are sho
Large circles represent Si, small ones O atoms. Dark atoms e
change their bonding environment or move by more than 0.75
during the event; light atoms are near neighbors of the dark ato
Activation energy, 10.84 eV; energy difference from initial to fin
configuration, 4.25 eV.
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as glassy and amorphous materials, polymers, and clus
Real-space moves are determined by the system itself
represent the most likely physical trajectories followed d
ing relaxation. ART is much less sensitive to the slowi
down caused by increasing activation energy barriers t
standard MC and MD approaches.

Already ART has produced results that could not
achieved via other techniques: it has produced well-rela
samples of a-Si @5#, a-GaAs @6,7#, Ni 80P20 @5#, and
minimum-energy configurations of clusters of Lennard-Jo
particles@8#. The examples of events presented here dem
strates that ART can easily reach regions of the energy la
-
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scape that are difficult to sample using more standard te
niques. This paper provides the necessary description of
algorithm to allow for a rapid application of ART to a wid
range of problems.
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